Vilobelimab in Combination With Tocilizumab May Synergistically Improve Mortality in Critically III Covid-19 Patients: A Post-hoc Analysis of the Phase III PANAMO Study

Christian Sandrock MD¹, Alexander P.J. Vlaar MD², Endry H.T. Lim MD², Bruce P. Burnett PhD³, Camilla Chong MD⁴, Carina Zink, MSc⁵, Robert Zerbib, MSc⁴, Raymond M. Panas PhD³, Renfeng Guo MD³, Niels Riedemann MD⁶, Diederik van de Beek MD²

Affiliations: 1. University of California Davis Health, Sacramento, CA, USA; 2. Amsterdam UMC, Amsterdam, the Netherlands; 3. InflaRx Pharmaceuticals, Inc, Ann Arbor, MI, USA; 4. InflaRx GmbH, Munich, Germany; 5. Metronomia Clinical Research GmbH, Munich, Germany; 6. InflaRx GmbH, Jena, Germany.

Purpose: Vilobelimab, an anti-C5a complement blocker, significantly reduced 28-day all-cause mortality in a global study of critically ill, septic and moderate to severe ARDS COVID-19 patients on top of standard-of-care (SOC) (PANAMO, N=368: NCT04333420).¹ Vilobelimab treated patients 28-day mortality was 32% vs placebo at 42% (HR 0.67, 95%CI:0.48-0.96, p=0.027). SoC included concomitant corticosteroids (97%) and anti-thrombotic agents (98%). In addition, ~20% of patients received immunomodulators, predominantly tocilizumab over baricitinib. C5a is involved in IL-6 generation in neutrophils in vitro and experimental sepsis.² C5a receptor (C5aR1) expression is strongly transcriptionally upregulated by IL-6 in experimental settings of inflammation and particularly sepsis.⁴ Inhibition of IL-6 greatly reduces the C5aR1 expression on neutrophils. A post-hoc analysis was performed to evaluate whether any prior or concomitant treatment with tocilizumab provided additional survival benefit on top of vilobelimab and SOC. A mechanism of action is proposed to describe this potential synergistic interaction between vilobelimab and tocilizumab.

Methods: A post-hoc Cox regression subgroup analysis was performed for 28- and 60-Day all-cause mortality in patients with or without prior or concomitant use of tocilizumab when receiving vilobelimab+SoC (Vilo+ or Vilo-) or placebo+SoC (Plc+ or Plc-). Safety was also assessed.

Baseline Patient Demographics						
Baseline Characteristics	Total (N=61)	Vilo + Toci (n=30)	Plc + Toci (n=31)			
Sex [n (%)]						
Male	41 (67.2%)	21 (70.0%)	20 (64.5%)			
Female	20 (32.8%)	9 (30.0%)	11 (35.5%)			
Childbearing potential	4 (20.0%)	2 (22.2%)	2 (18.2%)			
Age [years]						
n Maran (CD)	61	30	31			
Mean (SD) Min – Max	59.3 (12.7) 24 – 79	56.6 (14.1) 24 – 78	62.0 (10.7) 30 – 79			
Median (Q1 – Q3)	61.0 (53.0 – 68.0)	59.5 (48.0 – 68.0)	61.0 (55.0 – 71.0)			
BMI [kg/m²]						
n	61	30	31			
Mean (SD)	30.9 (5.6)	30.4 (4.8)	31.3 (6.4)			
Min – Max Median (Q1 – Q3)	22 – 55 30.2 (27.7 – 32.7)	22 – 45 30.3 (27.1 – 32.7)	23 – 55 30.2 (27.7 – 33.2)			
eGFR categories [n (%)]						
< 60 mL/min/1.73m ²	19 (31.1%)	7 (23.3%)	12 (38.7%)			
≥ 60 mL/min/1.73m²	42 (68.9%)	23 (76.7%)	19 (61.3%)			
3-point ordinal scale evaluation [n (%)]						
6 - Intubation and mechanical ventilation	17 (27.9%)	11 (36.7%)	6 (19.4%)			
7 - Ventilation + additional organ support – pressors, RRT, ECMO	44 (72.1%)	19 (63.3%)	25 (80.6%)			
Acute Respiratory Distress Syndrome (ARDS) severity [n (%)]						
Mild (200 mmHg $<$ PaO ₂ /FiO ₂ \le 300 mmHg)*	1 (1.6%)	1 (3.3%)	0 (0.0%)			
Moderate (100 mmHg < PaO₂/FiO₂ ≤ 200 mmHg)	38 (62.3%)	20 (66.7%)	18 (58.1%)			
Severe (PaO₂/FiO₂ ≤ 100 mmHg)	22 (36.1%)	9 (30.0%)	13 (41.9%)			
Hypertension [n (%)]	33 (54.1%)	12 (40.0%)	21 (67.7%)			
Diabetes [n (%)]	19 (31.1%)	8 (26.7%)	11 (35.5%)			
Coronary heart disease [n (%)]	9 (14.8%)	4 (13.3%)	5 (16.1%)			
Chronic obstructive pulmonary disease [n (%)]	2 (3.3%)	1 (3.3%)	1 (3.2%)			
Carcinoma [n (%)]	2 (3.3%)	1 (3.3%)	1 (3.2%)			

References: 1. Vlaar et al. *Lancet Resp Med*. 2022; 2. Riedemann et al. *J Immunol*. 2003; 3. Riedemann et al. *FASEB J*. 2004; 4. Mäck et al. *J Immunol*. 2001; 5. Riedemann et al. *J Clin Invest*. 2002.

Disclosures: C.S. and E.H.T.L. have no conflicts. A.P.J.V. and D.vB. are advisors to InflaRx GmbH. C.Z. is a paid consultant for statistical analysis. B.P.B., R.M.P. and R.G. are employees of InflaRx Pharmaceuticals, Inc. C.C., R.Z. & N.R. are employees of InflaRx GmbH.

Conclusion and Clinical Implication

In addition to corticosteroid and anti-thrombotic agent administration, this post-hoc analysis with a small number of patients demonstrates that the co-administration of vilobelimab with tocilizumab may have further potential to improve survival in critically ill COVID-19 patients. The co-administration of vilobelimab and tocilizumab suggests an interplay between C5a- and IL-6-induced inflammatory pathways involved in septic and ARDS COVID-19 patients. Co-administration of vilobelimab and tocilizumab may result in a synergistic survival benefit for certain critically ill ARDS patients. Prospective randomized studies are warranted to further study this observed promising effect.

Results: Safety (Safety Analysis Set)							
Adverse event category	Vilo + SOC + Toci (n=29)*	Plc + SOC + Toci (n=31)	Vilo + SOC (n=146)	Plc + SOC (n=158)			
Any fatal TEAE	5 (17.2%)	15 (48.4%)	57 (39.0%)	70 (44.3%)			
Any TEAE	27 (93.1%)	30 (96.8%)	132 (90.4%)	142 (89.9%)			
Any related TEAE	9 (31.0%)	8 (25.8%)	11 (7.5%)	8 (5.1%)			
Any serious TEAE	13 (44.8%)	21 (67.7%)	90 (61.6%)	99 (62.7%)			
Any serious related TEAE	2 (6.9%)	4 (12.9%)	6 (4.1%)	5 (3.2%)			

ModDDA High Lovel Croup Torre	Vilo + SOC + Toci	Plc + SOC + Toci	Vilo + SOC	Plc + SOC
MedDRA High Level Group Term	(n=29)*	(n=31)	(n=146)	(n=158)
Any TEAE infections & infestations	16 (55.2%)	20 (64.5%)	94 (64.4%)	92 (58.2%)
Infections – pathogen unspecified	11 (37.9%)	18 (58.1%)	80 (54.8%)	70 (44.3%)
Bacterial infectious disorders	10 (34.5%)	14 (45.2%)	58 (39.7%)	61 (38.6%)
Fungal infectious disorders	6 (20.7%)	6 (19.4%)	16 (11.0%)	10 (6.3%)
Viral infectious disorders	6 (20.7%)	4 (12.9%)	15 (10.3%)	9 (5.7%)

Plc = placebo; SOC = standard of care; TEAE = treatment emergent adverse events; Toci = tocilizumab; Vilo = vilobelimab *One patient in the vilobelimab + tocilizumab arm was randomized but consent was withdrawn by the patient's relative before first infusion of study drug. Hence the patient was not considered for the Safety Analysis Set.

Potential Mechanism for Dual Immunomodulator Effect in Severe COVID-19 Hyperinflammatory Cellular Response Dual Inhibition with Vilobelimab and Tocilizumab C5a C5a Vilobelimab Vilobelimab